
Processes
Back to Process Management

Interprocess Communication (1)

 Independent versus cooperating processes

◦ Information sharing, Computation speedup,

Modularity, Convenience

Message Passing Shared Memory

Interprocess Communication (2)

 Shared-memory systems

◦ Producer – consumer problem

 Unbounded buffer

 Bounded buffer

Interprocess Communication (3)

public interface Buffer <E> {

// producers call this method

public void insert(E item);

// consumers call this method

public E remove();

}

public class BufferImpl<E> implements Buffer<E> {

private static final int BUFFER_SIZE = 5;

private E[] elements;

private int in, out, count;

public BufferImpl() {

count = 0; in = 0; out = 0;

elements = (E[]) new Object[BUFFER_SIZE];

}

// producers call this method

public void insert(E item) {

}

// consumers call this method

public E remove() {

}

}

Interprocess Communication (4)
public void insert(E item) {

while (count == BUFFER_SIZE)

; // do nothing -- no free space

// add an element to the buffer

elements[in] = item;

in = (in + 1) % BUFFER_SIZE;

++count;

}

public E remove() {

E item;

while (count == 0)

; // do nothing - nothing to consume

// remove an item from the buffer

item = elements[out];

out = (out + 1) % BUFFER_SIZE;

--count;

return item;

}

Interprocess Communication (5)

 Message passing
◦ No shared memory

◦ send(message)

◦ receive(message)

◦ Fixed or variable size messages

 Complexity: system level implementation or
programming task

◦ Establish communication link

 Various physical implementations (shared memory,
hardware bus, network)

 Logical implementation
 Direct or indirect communication

 Synchronous or asynchronous communication

 Automatic or explicit buffering

Interprocess Communication (6)

◦ Naming

 Direct communication - - hard coding of names

 send(P, message)

 receive(Q, message)

 Link properties

 Between a pair of processes that need to know each

others’ identity

 Between exactly two processes

 A single link between each pair of processes

 Symmetry versus asymmetry in addressing

 receive(id, message)

Interprocess Communication (7)

 Indirect communication

 Mailboxes or ports

 send (A, message)

 receive(A, message)

 Link properties

 Between a pair of processes sharing a mailbox

 Link maybe shared by more than two processes

 A pair of processes may share any number of mailboxes

 Who receives a message?

 Associate a link to only a pair of processes

 Allow at most one receive

 Allow arbitrarily or algorithmically which process receives
the message, possibly identifying the recipient to the sender

 Mailbox owner: system or process

 Create, Send and Receive messages, Delete, Change owner

Interprocess Communication (8)

 Synchronisation

◦ Blocking or non-blocking send and receive

 Synchronous or asynchronous

◦ Rendezvous: blocking send and receive

 Trivial solution to consumer/producer problem

 Buffering

◦ Zero capacity – no messages waiting

◦ Bounded capacity – at most n messages waiting

◦ Unbounded capacity – any number of messages
waiting

◦ Latter two automatic buffering

Interprocess Communication (9)

public interface Channel<E> {

public void send(E item);

public E receive();

}

public class MessageQueue<E> implements Channel<E> {

private Vector<E> queue;

public MessageQueue() {

queue = new Vector<E>();

}

public void send(E item) {

queue.addElement(item);

}

public E receive() {

if (queue.size() == 0) return null;

else return queue.remove(0);

}

}

Channel<Date> mailBox =

new MessageQueue<Date>();

mailBox.send(new Date());

Producer

Date rightNow = mailBox.receive();

System.out.println(rightNow);

Consumer

INTERPROCESS
COMMUNICATION (9)

Local procedure call subsystem

Client/Server Communication

 Sockets

 Remote procedure calls (RPC)

 Remote method invocation (RMI)

Sockets (1)

 A socket is defined as an
endpoint for
communication
◦ Concatenation of IP

address and port
(>1024), e.g.
161.25.19.8:1625

 Communication
between a pair of
sockets

 Client/Server
architecture
◦ All connections must be

unique

Sockets (2)

 java.net

 Connection-oriented

(TCP) sockets –
Socket

 Connectionless (UDP)

sockets –
DatagramSocket

 MulticastSocket

◦ subclass of
DatagramSocket

Sockets (3)

Loopback

For contemplation

 What are the benefits and detriments of each of the

following? Consider both the systems and the

programmers’ levels.

◦ Symmetric and asymmetric communication

◦ Automatic and explicit buffering

◦ Fixed-sized and variable-sized messages

